Learn more about the joint AWS & Iguazio solution: https://www.iguazio.com/partners/aws/
Start working with MLRun, the open-source MLOps orchestration framework: https://github.com/mlrun/mlrun
The breakdown:
00:00 - Intro
02:15 - MLOps Overview
05:03 - Feature Engineering
07:44 - MLOps Workflow
10:44 - Solution: Feature Store
14:25 - Feature Store Competitive Landscape
17:03 - Features of a Feature Store
21:01 - CTO: Feature Store Sneakpeak
25:55 - Python Code example
27:57 - ML Pipeline example
30:07 - Covid-19 Patient Deterioration
33:26 - LIVE DEMO
52:45 - QA
At Iguazio, we’ve spoken and written at length about the challenges of bringing data science to production. The complexity of operationalizing ML can generate huge costs in terms of work hours and compute resources, especially as successful projects get scaled up and expanded. We’re proud to share that the Iguazio Data Science Platform has been named a fast moving leader in the GigaOm Radar for MLOps report.