Systems | Development | Analytics | API | Testing

Iguazio

6 Best Practices for Implementing Generative AI

Generative AI has rapidly transformed industries by enabling advanced automation, personalized experiences and groundbreaking innovations. However, implementing these powerful tools requires a production-first approach. This will maximize business value while mitigating risks. This guide outlines six best practices to ensure your generative AI initiatives are effective: valuable, scalable, compliant and future-proof.

2025 Gen AI Predictions: What Lies Ahead?

In 2024, organizations realized the revolutionizing business potential of gen AI. They accelerated their gen AI operationalization processes: explored new use cases to implement, researched LLMs and AI pipelines and contemplated underlying ethical issues. And with the seeds of the AI revolution now planted, the market is maturing accordingly.

Deploying Gen AI in Production with NVIDIA NIM and MLRun

In this demo, we showcase how to leverage MLRun, Iguazio, and NVIDIA NIMs to deploy and monitor a generative AI model at scale, focusing on reducing risks and ensuring seamless performance. Using NVIDIA's NIMs, the demo demonstrates advanced methods in model monitoring, logging, and continuous fine-tuning.

Choosing the Right-Sized LLM for Quality and Flexibility: Optimizing Your AI Toolkit

LLMs are the foundation of gen AI applications. To effectively operationalize and de-risk LLMs and ensure they bring business value, organizations need to consider not just the model itself, but the supporting infrastructure, including GPUs and operational frameworks. By optimizing them to your use case, you can ensure you are using an LLM that is the right fit to your needs.

MLRun v1.7 Launched - Solidifying Generative AI Implementation and LLM Monitoring

As the open-source maintainers of MLRun, we’re proud to announce the release of MLRun v1.7. MLRun is an open-source AI orchestration tool that accelerates the deployment of gen AI applications, with features such as LLM monitoring, fine-tuning, data management, guardrails and more. We provide ready-made scenarios that can be easily implemented by teams in organizations.

Gen AI for Marketing - From Hype to Implementation

Gen AI has the potential to bring immense value for marketing use cases, from content creation to hyper-personalization to product insights, and many more. But if you’re struggling to scale and operationalize gen AI, you’re not alone. That’s where most enterprises struggle. To date, many companies are still in the excitement and exploitation phase of gen AI. Few have a number of initial pilots deployed and even fewer have simultaneous pilots and are building differentiating use cases.