Systems | Development | Analytics | API | Testing

Iguazio

Implementing a Gen AI Smart Call Center Analysis App - MLOps Live #26 with McKinsey

Many enterprises operate expansive call centers, employing thousands of representatives who provide support and consult with clients, often spanning various time zones and languages. However, the successful implementation of a gen AI-driven smart call center analysis applications presents unique challenges such as data privacy controls, potential biases, AI hallucinations, language translation and more.

Implementing Gen AI for Financial Services

Gen AI is quickly reshaping industries, and the pace of innovation is incredible to witness. The introduction of ChatGPT, Microsoft Copilot, Midjourney, Stable Diffusion and many more incredible tools have opened up new possibilities we couldn’t have imagined 18 months ago. While building gen AI application pilots is fairly straightforward, scaling them to production-ready, customer-facing implementations is a novel challenge for enterprises, and especially for the financial services sector.

Best 13 Free Financial Datasets for Machine Learning [Updated]

Financial services companies are leveraging data and machine learning to mitigate risks like fraud and cyber threats and to provide a modern customer experience. By following these measures, they are able to comply with regulations, optimize their trading and answer their customers’ needs. In today’s competitive digital world, these changes are essential for ensuring their relevance and efficiency.

Nuclio Demo

Nuclio is a high-performance serverless framework focused on data, I/O, and compute intensive workloads. It is well integrated with popular data science tools, such as Jupyter and Kubeflow; supports a variety of data and streaming sources; and supports execution over CPUs and GPUs. The Nuclio project began in 2017 and is constantly and rapidly evolving; many start-ups and enterprises are now using Nuclio in production. In this video, Tomer takes you through a quick demo of Nuclio, triggering functions both from the UI and the CLI.

LLMOps vs. MLOps: Understanding the Differences

Data engineers, data scientists and other data professional leaders have been racing to implement gen AI into their engineering efforts. But a successful deployment of LLMs has to go beyond prototyping, which is where LLMOps comes into play. LLMOps is MLOps for LLMs. It’s about ensuring rapid, streamlined, automated and ethical deployment of LLMs to production. This blog post delves into the concepts of LLMOps and MLOps, explaining how and when to use each one.

GenAI for Financial Services - MLOps Live #25 with McKinsey

Generative AI has sparked the imagination with the explosion of tools like ChatGPT, CodePilot and others, highlighting the importance of LLMs as the basis for modern AI applications. However, implementing GenAI in the enterprise is challenging, and it becomes even more difficult for banks, insurance companies, and other financial services companies. Many Financial Service companies are struggling and end up missing out on the great value of GenAI and the competitive edge it can provide.

Implementing Gen AI in Practice

Across the industry, organizations are attempting to find ways to implement generative AI in their business and operations. But doing so requires significant engineering, quality data and overcoming risks. In this blog post, we show all the elements and practices you need to to take to productize LLMs and generative AI. You can watch the full talk this blog post is based on, which took place at ODSC West 2023, here.

How Sense Uses Iguazio as a Key Component of Their ML Stack

Sense is a talent engagement platform that improves recruitment processes with automation, AI and personalization. Since AI is a central pillar of their value offering, Sense has invested heavily in a robust engineering organization, including a large number of data and data science professionals. This includes a data team, an analytics team, DevOps, AI/ML, and a data science team. The AI/Ml team is made up of ML engineers, data scientists and backend product engineers.

How HR Tech Company Sense Scaled their ML Operations using Iguazio

Sense is a talent engagement company whose platform improves the recruitment processes with automation, AI and personalization. Since AI is a central pillar of their value offering, Sense has invested heavily in a robust engineering organization including a large number of data and AI professionals. This includes a data team, an analytics team, DevOps, AI/ML, and a data science team. The AI/Ml team is made up of ML engineers, data scientists and backend product engineers.

What Lays Ahead in 2024? AI/ML Predictions for the New Year

2023 was the year of generative AI, with applications like ChatGPT, Bard and others becoming so mainstream we almost forgot what it was like to live in a world without them. Yet despite its seemingly revolutionary capabilities, it's important to remember that Generative AI is an extension of “traditional AI”, which in itself is a step in the digital transformation revolution.