Data lake vs. data mesh: Which one is right for you?
What’s the right way to manage growing volumes of enterprise data, while providing the consistency, data quality and governance required for analytics at scale? Is centralizing data management in a data lake the right approach? Or is a distributed data mesh architecture right for your organization? When it comes down to it, most organizations seeking these solutions are looking for a way to analyze data without having to move or transform it via complex extract, transform and load (ETL) pipelines.