Systems | Development | Analytics | API | Testing

Unravel

Why Enhanced Visibility Matters for your Databricks Environment

Databricks has become a popular computing framework for big data as organizations increase their investments of moving data applications to the cloud. With that journey comes the promise of better collaboration, processing, and scaling of applications to the Cloud. However, customers are finding unexpected costs eating into their cloud budget as monitoring/observability tools like Ganglia, Grafana, the Databricks console only telling part of the story for charge/showback reports.

Migrating Big Data to the Cloud

Unravel Data helps a lot of customers move big data operations to the cloud. Chris Santiago is Global Director of Solution Engineering here at Unravel. So Unravel, and Chris, know a lot about what can make these migrations fail. Chris and intrepid Unravel Data marketer Quoc Dang recently delivered a webinar, Reasons why your Big Data Cloud Migration Fails and Ways to Overcome. You can view the webinar now, or read on to learn more about how to overcome these failures.

Reasons why your Big Data Cloud Migration Fails and Ways to Overcome

The Cloud brings many opportunities to help implement big data across your enterprise and organizations are taking advantage of migrating big data workloads to the cloud by utilizing best of breed technologies like Databricks, Cloudera, Amazon EMR and Azure HDI to name a few. However, as powerful as these technologies are, most organizations that attempt to use them fail. Join Chris Santiago, Director of Solution Engineering as he shares the top reasons why your big data cloud migration fails and ways to overcome it.

5 Ways to Slash your Data Platform Costs

Make your data platform faster, better & cheaper with Unravel by joining Chris Santiago, Director of Solution Engineering to learn how to reduce the time troubleshooting and the costs involved in operating your data platform. Instantly understand why technologies such as Spark applications, Kafka jobs, and Impala underperform or even fail! Define and meet enterprise service levels through proactive reporting and alerting.

Migrating Big Data Workloads to the Cloud with Unravel

The movement to utilize data to drive more effective business outcomes continues to accelerate. But with this acceleration comes an explosion of complex platforms to collect, process, store, and analyze this data. Ensuring these platforms are utilized optimally is a tremendous challenge for businesses. Join Mick Nolen at Senior Solutions Engineer at Unravel Data, as he takes you through Unravel’s approach to migrating big data workloads to the Cloud. Whether you’re migrating from

Top Takeaways From CDO Sessions: Customers and Thought Leaders

We’ve been busy speaking to our customers and thought leaders in the industry and have rounded up the key takeaways from our latest CDO sessions. Here are some of the top takeaways and advice gained from these sessions with big data leaders, Kumar Menon from Equifax, Anheuser-Busch’s Harinder Singh, Sandeep Uttamchandani from Unravel, and DBS Bank’s Matteo Pelati.

CDO Sessions: Getting Real with Data Analytics

Big data leaders are no doubt being challenged with market uncertainty. Data-driven insights can help organizations assess, and uncover market risk and opportunities that may arise during uncertain times. As businesses around the world adapt to digitization initiatives, modern data systems have become more mission critical toward continuity and competitive differentiation.

Amazon EMR Insider Series: Optimizing big data costs with Amazon EMR & Unravel

Data is a core part of every business. As data volumes increase so do costs of processing it. Whether you are running your Apache Spark, Hive, or Presto workloads on-premise or on AWS, Amazon EMR is a sure way to save you money. In this session, we’ll discuss several best practices and new features that enable you to cut your operating costs and save money when processing vast amounts of data using Amazon EMR.