Hey there! Have you ever found yourself scratching your head over unpredictable cloud data costs? It’s no secret that accurately forecasting cloud data spend can be a real headache. Fluctuating costs make it challenging to plan and allocate resources effectively, leaving businesses vulnerable to budget overruns and financial challenges. But don’t worry, we’ve got you covered!
The data landscape is constantly evolving, and with it come new challenges and opportunities for data teams. While generative AI and large language models (LLMs) seem to be all everyone is talking about, they are just the latest manifestation of a trend that has been evolving over the past several years: organizations tapping into petabyte-scale data volumes and running increasingly massive data pipelines to deliver ever more data analytics projects and AI/ML models.
Google recently introduced significant changes to its existing BigQuery pricing models, affecting both compute and storage. They announced the end of sale for flat-rate and flex slots for all BigQuery customers not currently in a contract. Google announced an increase to the price of on-demand analysis by 25% across all regions, starting on July 5, 2023.
Data is a powerful force that can generate business value with immense potential for businesses and organizations across industries. Leveraging data and analytics has become a critical factor for successful digital transformation that can accelerate revenue growth and AI innovation.