Systems | Development | Analytics | API | Testing

ChaosSearch

Ultimate Guide to Amazon S3 Data Lake Observability for Security Teams

Today’s enterprise networks are complex. Potential attackers have a wide variety of access points, particularly in cloud-based or multi-cloud environments. Modern threat hunters have the challenge of wading through vast amounts of data in an effort to separate the signal from the noise. That’s where a security data lake can come into play.

What is the Future of Apache Spark in Big Data Analytics?

Started in 2009 as a research project at UC Berkeley, Apache Spark transformed how data scientists and engineers work with large data sets, empowering countless organizations to accelerate time-to-value for their analytics activities. Apache Spark is now the most popular engine for distributed data processing at scale, with thousands of companies (including 80% of the Fortune 500) using Spark to support their big data analytics initiatives.

Databases Compared: Databricks vs. Snowflake vs. ChaosSearch vs. Elasticsearch

For organizations that generate large amounts of data, implementing a cloud database solution is a critical step towards enabling performant and cost-effective data storage, transformation, and analytics. Choosing the right cloud database solution involves careful consideration of features, capabilities, costs, and use cases to ensure alignment with your organization’s needs and objectives. This blog post features an in-depth comparison of four popular cloud database solutions: Databricks vs.

Inside the Modern Data Analytics Stack

Data analytics is nothing new. For decades, businesses have been deploying a "stack" of data analytics tools to collect, transform, evaluate and report on data. However, as data has grown larger in volume, and as the ability to analyze data quickly and accurately has become ever-more important to business success, the data analytics stacks that businesses depend on have evolved significantly. So, if you haven't taken a look at data analytics stacks recently, they're worth revisiting.

How to Calculate Log Analytics ROI

Calculating log analytics ROI is often complicated. For many teams, this technology can be a cost center. Depending on your platform, the cost of a log management solution can quickly add up. For example, many organizations use solutions like the ELK stack because the initial startup costs are low. Yet, over time, costs can creep up for many reasons, including the volume of data collected and ingested per day, required retention periods, and the associated personnel needed to manage the deployment.

How to Search Your Cloud Data - With No Data Movement

Organizations are building data lakes and bringing data together from many systems in raw format into these data lakes, hoping to process and extract differentiated value out of this data. However, if you’re trying to get value out of operational data, whether on prem or in the cloud, there are inherent risks and costs associated with moving data from one environment to another.

Process, Store and Analyze JSON Data with Ultimate Flexibility

Javascript Object Notation (JSON) is becoming the standard log format, with most modern applications and services taking advantage of its flexibility for their logging needs. However, the great flexibility for developers quickly turns into complexity for the DevOps and Data Engineers responsible for ingesting and processing the logs. That’s why we developed JSON FLEX: a scalable analytics solution for complex, nested JSON data.

Unpacking the Differences between AWS Redshift and AWS Athena

On top of their industry-leading cloud infrastructure, Amazon Web Services (AWS) offers more than 15 cloud-based analytics services to satisfy a diverse range of business and IT use cases. For AWS customers, understanding the features and benefits of all 15 AWS analytics services can be a daunting task - not to mention determining which analytics service(s) to deploy for a specific use case.

Inside DataOps: 3 Ways DevOps Analytics Can Create Better Products

Can DataOps help data consumers reveal and take action on powerful product insights hidden in operational data? For many companies, the answer is yes! The emerging practice of DataOps applies Agile development principles and DevOps best practices (e.g. collaboration, automation, monitoring and logging, observability) to data science and engineering, making it faster and easier for organizations to uncover valuable product insights that enable innovation.