Systems | Development | Analytics | API | Testing

Latest Posts

How Unity analyzes petabytes of data in BigQuery for reporting and ML initiatives

Editor’s note: We’re hearing today from Unity Technologies, which offers a development platform for gaming, architecture, film and other industries. Here, Director of Engineering and Data Sampsa Jaatinen shares valuable insights for modern technology decision makers, whatever industry they’re in.

Introducing table-level access controls in BigQuery

We’re announcing a key capability to help organizations govern their data in Google Cloud. Our new BigQuery table-level access controls (table ACLs) are an important step that enables you to control your data and share it at an even finer granularity. Table ACLs also bring closer compatibility with other data warehouse systems where the base security primitives include tables—allowing migration of security policies more easily.

Optimize BigQuery costs with Flex Slots

Google Cloud’s enterprise data warehouse BigQuery offers some flexible pricing options so you can get the most out of your resources. Our recently added Flex Slots can save you money by switching your billing to flat-rate pricing for defined time windows to add maximum efficiency. Flex Slots lets you take advantage of flat-rate pricing when it’s most advantageous, rather than only using on-demand pricing.

Effectively using BigQuery Reservations

BigQuery has several built-in features and capabilities to help you save on costs, manage spend, and get the most out of your data warehouse resources. In this blog, we’ll dive into Reservations, BigQuery’s platform for cost and workload management. In short, BigQuery Reservations enables you to: Quickly purchase and deploy BigQuery slots Assign slots to various parts of your organization

Choosing between BigQuery on-demand and flat rate pricing

When you use data to guide your business decision-making process, you need to continually optimize your data analytics usage to get more out of that data. Here, we’ll share some ways to be more efficient with your BigQuery usage through ups and downs and changing demands.

Celebrating a decade of data: BigQuery turns 10

Editor’s note: Today we’re hearing from some of the team members involved in building BigQuery over the past decade, and even before. Our thanks go to Jeremy Condit, Dan Delorey, Sudhir Hasbe, Felipe Hoffa, Chad Jennings, Jing Jing Long, Mosha Pasumansky, Tino Tereshko, and William Vambenepe, and Alicia Williams. This month, Google’s cloud data warehouse BigQuery turns 10.

Automating BigQuery exports to an email

Data accessibility and analysis is a crucial part of getting value from your data. While there are many methods to view data when it comes to BigQuery, one common way is to export query results as an email on a scheduled basis. This lets end users get an email with a link to the most recent query results, and is a good solution for anyone looking for daily statistics on business processes, monthly summaries of website metrics, or weekly business reviews.

What's happening in BigQuery: Efficient new views and Cloud AI integrations

BigQuery, Google Cloud’s petabyte-scale data warehouse, lets you ingest and analyze data quickly and with high availability, so you can find new insights, trends, and predictions to efficiently run your business. Our engineering team is continually making improvements to BigQuery so you can get even more out of it. Recently added BigQuery features include new materialized views, column-level security, and BigQuery ML additions.

How do I move data from MySQL to BigQuery?

In a market where streaming analytics is growing in popularity, it’s critical to optimize data processing so you can reduce costs and ensure data quality and integrity. One approach is to focus on working only with data that has changed instead of all available data. This is where change data capture (CDC) comes in handy. CDC is a technique that enables this optimized approach.

Introducing BigQuery column-level security: new fine-grained access controls

We’re announcing a key capability to help organizations govern their data in Google Cloud. Our new BigQuery column-level security controls are an important step toward placing policies on data that differentiate between classes. This allows for compliance with regulations that mandate such distinction, such as GDPR or CCPA.