Systems | Development | Analytics | API | Testing

Latest Posts

Future-Proofing Your App: Strategies for Building Long-Lasting Apps

The generative AI industry is changing fast. New models and technologies (Hello GPT-4o) are emerging regularly, each more advanced than the last. This rapid development cycle means that what was cutting-edge a year ago might now be considered outdated. The rate of change demands a culture of continuous learning and technological adaptation.

LLM Validation and Evaluation

LLM evaluation is the process of assessing the performance and capabilities of LLMs. This helps determine how well the model understands and generates language, ensuring that it meets the specific needs of applications. There are multiple ways to perform LLM evaluation, each with different advantages. In this blog post, we explain the role of LLM evaluation in AI lifecycles and the different types of LLM evaluation methods. In the end, we show a demo of a chatbot that was developed with crowdsourcing.

Integrating LLMs with Traditional ML: How, Why & Use Cases

Ever since the release of ChatGPT in November 2022, organizations have been trying to find new and innovative ways to leverage gen AI to drive organizational growth. LLM capabilities like contextual understanding and response to natural language prompts enable the development of applications like automated AI chatbots, smart call center apps, or for financial services.

LLM Metrics: Key Metrics Explained

Organizations that monitor their LLMs will benefit from higher performing models at higher efficiency, while meeting ethical considerations like ensuring privacy and eliminating bias and toxicity. In this blog post, we bring the top LLM metrics we recommend measuring and when to use each one. In the end, we explain how to implement these metrics in your ML and gen AI pipelines.

Generative AI in Call Centers: How to Transform and Scale Superior Customer Experience

Customer care organizations are facing the disruptions of an AI-enabled future, and gen AI is already impacting customer care organizations across use cases like agent co-pilots, summarizing calls and deriving insights, creating chatbots and more. In this blog post, we dive deep into these use cases and their business and operational impact. Then we show a demo of a call center app based on gen AI that you can follow along.

Why You Need GPU Provisioning for GenAI

GPU as a Service (GPUaaS) serves as a cost-effective solution for organizations who need more GPUs for their ML and gen AI operations. By optimizing the use of existing resources, GPUaaS allows organizations to build and deploy their applications, without waiting for new hardware. In this blog post, we explain how GPUaaS as a service works, how it can close the GPU shortage gap, when to use GPUaaS and how it fits with gen AI.

Best 10 Free Datasets for Manufacturing [UPDATED]

The manufacturing industry can benefit from AI, data and machine learning to advance manufacturing quality and productivity, minimize waste and reduce costs. With ML, manufacturers can modernize their businesses through use cases like forecasting demand, optimizing scheduling, preventing malfunctioning and managing quality. These all significantly contribute to bottom line improvement.

Implementing Gen AI for Financial Services

Gen AI is quickly reshaping industries, and the pace of innovation is incredible to witness. The introduction of ChatGPT, Microsoft Copilot, Midjourney, Stable Diffusion and many more incredible tools have opened up new possibilities we couldn’t have imagined 18 months ago. While building gen AI application pilots is fairly straightforward, scaling them to production-ready, customer-facing implementations is a novel challenge for enterprises, and especially for the financial services sector.

Best 13 Free Financial Datasets for Machine Learning [Updated]

Financial services companies are leveraging data and machine learning to mitigate risks like fraud and cyber threats and to provide a modern customer experience. By following these measures, they are able to comply with regulations, optimize their trading and answer their customers’ needs. In today’s competitive digital world, these changes are essential for ensuring their relevance and efficiency.

LLMOps vs. MLOps: Understanding the Differences

Data engineers, data scientists and other data professional leaders have been racing to implement gen AI into their engineering efforts. But a successful deployment of LLMs has to go beyond prototyping, which is where LLMOps comes into play. LLMOps is MLOps for LLMs. It’s about ensuring rapid, streamlined, automated and ethical deployment of LLMs to production. This blog post delves into the concepts of LLMOps and MLOps, explaining how and when to use each one.