Systems | Development | Analytics | API | Testing

Latest News

What's new in BigQuery ML: non-linear model types and model export

We launched BigQuery ML, an integrated part of Google Cloud’s BigQuery data warehouse, in 2018 as a SQL interface for training and using linear models. Many customers with a large amount of data in BigQuery started using BigQuery ML to remove the need for data ETL, since it brought ML directly to their stored data. Due to ease of explainability, linear models worked quite well for many of our customers.

Kubeflow: Simplified, Extended and Operationalized

The success and growth of companies can be determined by the technologies they rely on in their tech stack. To deploy AI enabled applications to production, companies have discovered that they’ll need an army of developers, data engineers, DevOps practitioners and data scientists to manage Kubeflow — but do they really? Much of the complexity involved in delivering data intensive products to production comes from the workflow between different organizational and technology silos.

How GPUaaS On Kubeflow Can Boost Your Productivity

Tapping into more compute power is the next frontier of data science. Data scientists need it to complete increasingly complex machine learning (ML) and deep learning (DL) tasks without it taking forever. Otherwise, faced with a long wait for compute jobs to finish, data scientists give in to the temptation to test smaller datasets or run fewer iterations in order to produce results more quickly.

AI, ML and ROI - Why your balance sheet cares about your technology choices

Much has been written on the growth of machine learning and its impact on almost every industry. As businesses continue to evolve and digitally transform, it’s become an imperative for businesses to include AI and ML in their strategic plans in order to remain competitive. In Competing in the Age of AI, Harvard professors Marco Iansiti and Karim R. Lakhani illustrate how this can be confounding for CEOs, especially in the face of AI-powered competition.

Concept Drift and the Impact of COVID-19 on Data Science

Modern business applications leverage Machine Learning (ML) and Deep Learning (DL) models to analyze real-world and large-scale data, to predict or to react intelligently to events. Unlike data analysis for research purposes, models deployed in production are required to handle data at scale and often in real-time, and must provide accurate results and predictions for end-users.

5 Incredible Data Science Solutions For Real-World Problems

Data science has come a long way, and it has changed organizations across industries profoundly. In fact, over the last few years, data science has been applied not for the sake of gathering and analyzing data but to solve some of the most pertinent business problems afflicting commercial enterprises.

Iguazio Releases Version 2.8 Including Enterprise-Grade Automated Pipeline Management, Model Monitoring & Drift Detection

We’re delighted to announce the release of the Iguazio Data Science Platform version 2.8. The new version takes another leap forward in solving the operational challenge of deploying machine and deep learning applications in real business environments. It provides a robust set of tools to streamline MLOps and a new set of features that address diverse MLOps challenges.

7 Rules for Bulletproof, Reproducible Machine Learning R&D

So, if you’re a nose-to-the-keyboard developer, there’s ample probability that this analogy is outside your comfort zone … bear with me. Imagine two Olympics-level figure skaters working together on the ice, day in and day out, to develop and perfect a medal-winning performance. Each has his or her role, and they work in sync to merge their actions and fine-tune the results.

Elevating Data Science Practices for the Media, Entertainment & Advertising Industries

As more and more companies are embedding AI projects into their systems, attracted by the promise of efficiencies and competitive advantages, data science teams are feeling the growing pains of a relatively immature practice without widespread established and repeatable norms.

Building ML Pipelines Over Federated Data & Compute Environments

A Forbes survey shows that data scientists spend 19% of their time collecting data sets and 60% of their time cleaning and organizing data. All told, data scientists spend around 80% of their time on preparing and managing data for analysis. One of the greatest obstacles that make it so difficult to bring data science initiatives to life is the lack of robust data management tools.