Systems | Development | Analytics | API | Testing

Latest News

Using COD and CML to build applications that predict stock data

No, not really. You probably won’t be rich unless you work really hard… As nice as it would be, you can’t really predict a stock price based on ML solely, but now I have your attention! Continuing from my previous blog post about how awesome and easy it is to develop web-based applications backed by Cloudera Operational Database (COD), I started a small project to integrate COD with another CDP cloud experience, Cloudera Machine Learning (CML).

Continuous model evaluation with BigQuery ML, Stored Procedures, and Cloud Scheduler

Continuous evaluation—the process of ensuring a production machine learning model is still performing well on new data—is an essential part in any ML workflow. Performing continuous evaluation can help you catch model drift, a phenomenon that occurs when the data used to train your model no longer reflects the current environment.

Handling Large Datasets in Data Preparation & ML Training Using MLOps

Data science has become an important capability for enterprises looking to solve complex, real-world problems, and generate operational models that deliver business value across all domains. More and more businesses are investing in ML capabilities, putting together data science teams to develop innovative, predictive models that provide the enterprise with a competitive edge — be it providing better customer service or optimizing logistics and maintenance of systems or machinery.

The Importance of Data Storytelling in Shaping a Data Science Product

Artificial intelligence and machine learning are relentlessly revolutionizing marketplaces and ushering in radical, disruptive changes that threaten incumbent companies with obsolescence. To maintain a competitive edge and gain entry into new business segments, many companies are racing to build and deploy AI applications.

Top 10 AI & Data Podcasts You Should Be Listening To

With the speed of change in artificial intelligence (AI) and big data, podcasts are an excellent way to stay up-to-date on recent developments, new innovations, and gain exposure to experts’ personal opinions, regardless if they can be proven scientifically. Great examples of the thought-provoking topics that are perfect for a podcast’s longer-form, conversational format include the road to AGI, AI ethics and safety, and the technology’s overall impact on society.

How to Build Real-Time Feature Engineering with a Feature Store

Simplifying feature engineering for building real-time ML pipelines might just be the next holy grail of data science. It’s incredibly difficult and highly complex, but it’s also desperately needed for multiple use cases across dozens of industries. Currently, feature engineering is siloed between data scientists, who search for and create the features, and data engineers, who rewrite the code for a production environment.

Enabling The Full ML Lifecycle For Scaling AI Use Cases

When it comes to machine learning (ML) in the enterprise, there are many misconceptions about what it actually takes to effectively employ machine learning models and scale AI use cases. When many businesses start their journey into ML and AI, it’s common to place a lot of energy and focus on the coding and data science algorithms themselves.

Democratizing Machine Learning Capabilities With Qlik Sense and Amazon SageMaker

The ability to discover insights from past events, transactions and interactions is how many customers currently utilize Qlik. Qlik’s unique approach to Business Intelligence (BI) using an in-memory engine and intuitive interface has democratized BI for typical business users, who usually have little to no technical savvy. But, for many years, organizations have only been able to analyze metrics or KPIs of “what has happened” (i.e., descriptive analytics).

Predictive Real-Time Operational ML Pipeline: Fighting First-Day Churn

Retaining customers is more important for survival than ever. For businesses that rely on very high user volume, like mobile apps, video streaming, social media, e-commerce and gaming, fighting churn is an existential challenge. Data scientists are leading the fight to convert and retain high LTV (lifetime value) users.

Introducing Lightweight, Customizable ML Runtimes in Cloudera Machine Learning

With the complexity of data growing across the enterprise and emerging approaches to machine learning and AI use cases, data scientists and machine learning engineers have needed more versatile and efficient ways of enabling data access, faster processing, and better, more customizable resource management across their machine learning projects.