In the first blog post of the series, we saw the dire state of analytics adoption. This problem feeds into the low usage and governance of data across organizations. Then, in the second post, we saw how the evolution of analytics has brought us to a prime position for augmented analytics. But will this new wave of augmented analytics break through the barriers to BI adoption?
This conference is shaping up to be the largest ever focused on Computer Vision and Visual Artificial Intelligence. We invite you to attend the session and meet our experts. To arrange a time to meet during the conference, send an email to Neil Berns at neil.berns@allegro.ai.
The cloud native paradigm for application development has come to consist of microservices architecture, containerized services, orchestration, and distributed management. Many companies are already on this journey, with varying degrees of success. To be successful in developing cloud native applications, it’s important to craft and implement the right strategy. Let’s examine a number of important elements that must be part of a viable cloud native development strategy.
Software vendors that are looking to accelerate their path to AI need to take advantage of the AI already in analytics platforms. Gartner believes that the future of analytics is augmented. That is, analytics will be AI-driven and all end-to-end use cases will be automated. I also believe it won’t be long before analytics is no longer on our desktops - instead it’ll be embedded in applications.
If, as we saw in part one of this series, 77% of businesses are 'definitely not' or 'probably not' using analytics to its full extent and the adoption rate of analytics platforms is an abysmal 32%, something drastic needs to happen. Can the era of augmented analytics with its machine learning and AI fix this adoption issue?
If you’ve got an app that keeps going down for no apparent reason, don’t worry: this quick and easy guide will give you the tools to get it up and running smoothly. If you’re not from the tech world yourselves, you probably think us programmers get everything right all the time. That everything in our world is so cutting-edge it can slice through ice, and app crashes are practically an alien concept for us.
Can we fix the plague in analytics with AI? Every Business Intelligence (BI) and analytics vendor is integrating a form of artificial intelligence (AI), machine learning algorithm (ML), and natural language generation (NLG) into their products. 'Augmented analytics', is the hot new topic and full of hype right now, but can it fix the fundamental flaw that has plagued BI tools for decades - adoption?