The seed for this article was planted when Anant was struck by a headline on his Twitter feed: “You don’t need ML/AI.
A common perspective that I see amongst software designers and developers is that Machine Learning and Artificial Intelligence (AI) are technologies which are only meant for an elite group. However, if a particular technology is to truly succeed and scale, it should be friendly with the common man (in this case a normal software developer).
As the popularity of home automation and the cost of electricity grow around the world, energy conservation has become a higher priority for many consumers. With a number of smart meter devices available for your home, you can now measure and record overall household power draw, and then with the output of a machine learning model, accurately predict individual appliance behavior simply by analyzing meter data.
Machine learning is in the ascendancy. Particularly when it comes to pattern recognition, machine learning is the method of choice. Tangible examples of its applications include fraud detection, image recognition, predictive maintenance, and train delay prediction systems. In day-to-day machine learning (ML) and the quest to deploy the knowledge gained, we typically encounter these three main problems (but not the only ones).
Financial institutions have a natural desire to predict the volume, volatility, value or other parameters of financial instruments or their derivatives, to manage positions and mitigate risk more effectively. They also have a rich set of business problems (and correspondingly large datasets) to which it’s practical to apply machine learning techniques.