Systems | Development | Analytics | API | Testing

Machine Learning

How to Implement Gen AI in Highly Regulated Environments: Financial Services and Telecommunications and More

If 2023 was the year of gen experimentation, 2024 is the year of gen AI implementation. As companies embark on their implementation journey, they need to deal with a host of challenges, like performance, GPU efficiency and LLM risks. These challenges are exacerbated in highly-regulated industries, such as financial services and telecommunication, adding further implementation complexities. Below, we discuss these challenges and present some best practices and solutions to take into consideration.

10 Best APIs for Machine Learning

Machine learning APIs provide developers with powerful tools to integrate complex algorithms and models into applications without building them from scratch. These APIs simplify the development process by offering pre-trained models and standardized methods for different tasks. These include image recognition, natural language processing, and predictive analytics. This accessibility democratizes machine learning so that developers of varying expertise can leverage cutting-edge technology efficiently.

Building Customer-Facing Gen AI Applications Effectively & Responsibly - MLOps Live #31 with MongoDB

In this session, we explored the unique challenges of implementing gen AI in production environments, when agents are in direct contact with your customers. We shared the Iguazio & MongoDB one-stop-shop solution for building gen AI applications that scale effectively and efficiently, with built-in guardrails and monitoring. We'll show how the end-to-end application lifecycle is addressed – From data management all the way to governance and monitoring in production.

Building and Scaling Gen AI Applications with Simplicity, Performance and Risk Mitigation in Mind Using Iguazio and MongoDB

AI and generative Al can lead to major enterprise advancements and productivity gains. By offering new capabilities, they open up opportunities for enhancing customer engagement, content creation, virtual experts, process automation and optimization, and more.

Swift Machine Learning: Using Apple Core ML

A sub-discipline of artificial intelligence (AI), machine learning (ML) focuses on the development of algorithms to build systems capable of learning from, and making decisions based on, data. In iOS development, ML allows us to create applications that can identify patterns and make predictions, adapting a user’s experience by learning from their behaviour.

Ensuring Accuracy and Reliability with ML Model Validation

As demand for machine learning (ML) grows, rigorous testing and quality assurance are crucial. ML models need quality training data and robust algorithms. Without thorough testing, inaccurate outcomes can occur, especially in sectors like healthcare, finance, and transportation. A 2023 ScienceDirect report found data leakage in 294 academic publications across 17 disciplines, highlighting the need to address this issue in ML-based science.

RAG vs Fine-Tuning: Navigating the Path to Enhanced LLMs

RAG and Fine-Tuning are two prominent LLM customization approaches. While RAG involves providing external and dynamic resources to trained models, fine-tuning involves further training on specialized datasets, altering the model. Each approach can be used for different use cases. In this blog post, we explain each approach, compare the two and recommend when to use them and which pitfalls to avoid.