Systems | Development | Analytics | API | Testing

June 2024

Embedded Snowpark Container Services Set RelationalAI's Snowflake Native App on Path for Success

Despite the seemingly nonstop conversation surrounding AI, the data suggests that bringing AI into enterprises is still easier said than done. There’s so much potential and plenty of value to be captured — if you have the right models and tools. Implementing advanced AI today requires a solid data foundation as well as a set of solutions, each demanding its own tools and complex infrastructure.

Amber Electric Relies On The AI Data Cloud To Give Australians Greater Control Of Their Energy Usage

Amber Electric is on a mission to help shift Australia to 100% renewable energy. They are powered by a desire to show people that a win for the planet is a win for them too. The Snowflake AI Data Cloud has proven to be a hit at Amber Electric thanks to its easy-to-use interface, cost effectiveness, and scalability, helping the company streamline its customer invoicing and, as a result, customer experience.

5 Ways Healthcare and Life Sciences Organizations Are Using Gen AI

Much has been said about how generative AI will impact the healthcare and life sciences industries. While generative AI will never replace a human healthcare provider, it is going a long way toward addressing key challenges and bottlenecks in the industry. And the effects are expected to be far-reaching across the sector.

Zoom Builds Enterprise AI Applications In The AI Data Cloud

Learn how Zoom built an internal enterprise AI tool that enables sales and marketing teams to directly ask questions to data through natural language. The security and governance of the AI Data Cloud enabled data scientists to confidently leverage its Cortex AI and Streamlit features to build the enterprise AI app.

TruLens Snowflake OSS

When Snowflake acquired the TruEra AI Observability platform, we committed to keeping TruLens open source. We’re not only keeping that promise; we’re emphasizing it. Our goal remains to support LLM app developers in creating trustworthy generative AI applications. In the weeks since the acquisition, we have already added ecosystem-friendly enhancements including: We plan to continue making enhancements and improvements that benefit the community at large, whether on Snowflake or not.

Open, Interoperable Storage with Iceberg Tables, Now Generally Available

Thousands of customers have worked with Snowflake to cost-effectively build a secure data foundation as they look to solve a growing variety of business problems with more data. Increasingly customers are looking to expand that powerful foundation to a broader set of data across their enterprise.

Modern Data Engineering: Free Spark to Snowpark Migration Accelerator for Faster, Cheaper Pipelines in Snowflake

In the age of AI, enterprises are increasingly looking to extract value from their data at scale but often find it difficult to establish a scalable data engineering foundation that can process the large amounts of data required to build or improve models. Designed for processing large data sets, Spark has been a popular solution, yet it is one that can be challenging to manage, especially for users who are new to big data processing or distributed systems.

The Future of Telecoms: Embracing Gen AI as a Strategic Competitive Advantage

The telecom industry is undergoing an unprecedented transformation. Fueled by tech advancements such as 5G, cloud computing, Internet of Things (IoT) and machine learning (ML), telecoms have the opportunity to reshape and streamline operations and make significant improvements in service delivery, customer experience and network optimization.

Streamlit in Snowflake: Improved Customization, Performance and AI Capabilities

Snowflake’s mission is to mobilize the entire world’s data, and there are millions of data scientists and developers who don’t have access to full-stack engineering teams. It’s been our endeavor to bring the power of the AI Data Cloud to every individual developer, data scientist and machine learning engineer, so that they can build and share world-class data apps — all by themselves. Streamlit is an open source library that turns Python scripts into shareable web apps.

Ingest Data Faster, Easier and Cost-Effectively with New Connectors and Product Updates

The journey toward achieving a robust data platform that secures all your data in one place can seem like a daunting one. But at Snowflake, we’re committed to making the first step the easiest — with seamless, cost-effective data ingestion to help bring your workloads into the AI Data Cloud with ease. Snowflake is launching native integrations with some of the most popular databases, including PostgreSQL and MySQL.

Streamline Operations and Empower Business Teams to Unlock Unstructured Data with Document AI

It is estimated that between 80% and 90% of the world’s data is unstructured1, with text files and documents making up a significant portion. Every day, countless text-based documents, like contracts and insurance claims, are stored for safekeeping. Despite containing a wealth of insights, this vast trove of information often remains untapped, as the process of extracting relevant data from these documents is challenging, tedious and time-consuming.

Data-Informed vs. Data-Driven: A Conversation With David Cohen, CDO At Weight Watchers

In this "Data Cloud Podcast" episode, David Cohen, Chief Data Officer at Weight Watchers, shares his thoughts on why having silos of information hobbles an organization and how Snowflake continues to help Weight Watchers do its job well. He also walks through the important distinction between what it means to be data-informed versus data-driven.

Snowflake ML Now Supports Expanded MLOps Capabilities for Streamlined Management of Features and Models

Bringing machine learning (ML) models into production is often hindered by fragmented MLOps processes that are difficult to scale with the underlying data. Many enterprises stitch together a complex mix of various MLOps tools to build an end-to-end ML pipeline. The friction of having to set up and manage separate environments for features and models creates operational complexity that can be costly to maintain and difficult to use.

Snowflake Summit 2024 | Opening Keynote

Watch the full Opening Keynote presentation from Snowflake Summit 2024. The presentation features comments by Snowflake CEO Sridhar Ramaswamy, who discusses the impact AI has had across every organization, followed by a CEO fireside conversation between Sridhar and NVIDIA Founder and CEO Jensen Huang, who discusses what the future holds in this new AI era.

Accelerate Development and Productivity with DevOps in Snowflake

Today’s data-driven world requires an agile approach. Modern data teams are constantly under pressure to deliver innovative solutions faster than ever before. Fragmented tooling across data engineering, application development and AI/ML development creates a significant bottleneck, hindering the speed of value delivery required to stay competitive. Disparate tools create a complex landscape for developers and data teams, hindering efficient pipeline development and deployment.

Observability in Snowflake: A New Era with Snowflake Trail

Discovering and surfacing telemetry traditionally can be a tedious and challenging process, especially when it comes to pinpointing specific issues for debugging. However, as applications and pipelines grow in complexity, understanding what’s happening beneath the surface becomes increasingly crucial. A lack of visibility hinders the development and maintenance of high-quality applications and pipelines, ultimately impacting customer experience.

Introducing Snowflake Notebooks, an End-to-End Interactive Environment for Data & AI Teams

We’re pleased to announce the launch of Snowflake Notebooks in public preview, a highly anticipated addition to the Snowflake platform tailored specifically to integrate the best of Snowflake within a familiar notebook interface. Snowflake Notebooks aim to provide a convenient, easy-to-use interactive environment that seamlessly blends Python, SQL and Markdown, as well as integrations with key Snowflake offerings, like Snowpark ML, Streamlit, Cortex and Iceberg tables.

Celebrating Innovation and Excellence: Announcing Snowflake's Data Drivers

Snowflake announced the global winners of the sixth annual Data Drivers Awards, the premier data awards that honor Snowflake customers who are leading their organizations and transforming their industries with the AI Data Cloud. This year’s winners of the Data Drivers Awards include data leaders from across global organizations, including Caterpillar, Bentley, Mitsubishi Corporation, Zoom and more.

Snowflake Massively Expands Types of Applications That Can Be Built, Deployed and Distributed on Snowflake

Apps are the way to democratize AI: to make it accessible to everyone and streamline customers’ experiences with faster time to insights. According to a recent IDC survey, AI applications is currently the largest category of AI software, accounting for roughly one-half of the market’s overall revenue in 2023.

Simplified End-to-End Development for Production-Ready Data Pipelines, Applications, and ML Models

In today’s world, innovation doesn’t happen in a vacuum; collaboration can help technological breakthroughs happen faster. The rise of AI, for example, will depend on the collaboration between data and development. We’re increasingly seeing software engineering workloads that are deeply intertwined with a strong data foundation.

Introducing Polaris Catalog: An Open Source Catalog for Apache Iceberg

Open source file and table formats have garnered much interest in the data industry because of their potential for interoperability — unlocking the ability for many technologies to safely operate over a single copy of data. Greater interoperability not only reduces the complexity and costs associated with using many tools and processing engines in parallel, but it would also reduce potential risks associated with vendor lock-in.